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Abstract

This project studies infinitesimal perturbations of the spherically symmet-

ric solution to the Einstein-Maxwell system of PDEs with nonlinear Born-

Infeld Lagrangian. The motivation comes from the search for a consistent

theory of electromagnetism that can describe the spacetime of a single point

charge. Making use of nonlinear electromagnetic theories has helped to avoid

difficulties such as infinite self-energy and strong naked singularities, but up

until now most work has focused on finding spherically symmetric solutions.

Since real point charges such as electrons and protons possess an intrinsic

angular momentum (“spin”), it is important to investigate how removal of

spherical symmetry affects the spacetime, as this will enable us to assess the

validity of the Born-Infeld Lagrangian in a description of real charged parti-

cles. In this project, a linearisation of the perturbed Einstein-Maxwell system

was found, but the length and complexity of the perturbed equations made

detailed analysis of the resulting system difficult.
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1 Introduction

The motivation for this project comes from the search for a consistent theory of electro-

magnetism that can describe the spacetime of a single point charge. In linear Maxwell

theory several difficulties arise, including the infinite self-energy of the point charge and

the presence of a strong naked singularity (i.e. one which is not covered by an event

horizon) on the time axis. As a solution to these problems, Max Born proposed that

the equations for electrodynamics be made nonlinear.[4] Some work has been done on

trying to understand the properties of spherically symmetric nonlinear electromagnetic

theories[12], but up until now no attempts have been made to examine the effects of

removing spherical symmetry. In this project, an infinitesimal perturbation to the spher-

ically symmetric solution is studied as a first step to investigating how the loss of spherical

symmetry affects the spacetime.

The Einstein-Maxwell system of PDEs can be derived by coupling Einstein’s field

equations to the Maxwell equations for electromagnetism, and reads
Rµν −

1

2
Rgµν = κTµν (1.1a)

dF = 0 (1.1b)

dM = 0 (1.1c)

where Rµν is the Ricci tensor, R is the Ricci scalar, Tµν is the stress-energy tensor, F is the

Faraday tensor of the electromagnetic field, and M is the Maxwell tensor corresponding

to F (each of which is defined in Section 3). M and F are related by an “aether law”

which can be derived from the Lagrangian of the system. In linear Maxwell theory, this

law is given by

M = − ∗ F (1.2)

where ∗ is the Hodge star operator. The unique spherically symmetric asymptotically

flat solution of this system is known as the Reissner-Weyl-Nordström spacetime (RWN),

and is described in Section 4.1.1.

There are several difficulties associated with the RWN solution, the first being that

the self-energy of the point charge is infinite. Since mass and energy are equivalent in

general relativity, this means that the total electrostatic energy of a nonzero charge makes

an infinite contribution to the total mass of the spacetime. A further difficulty with the

RWN solution is the presence of a strong eternal naked singularity at the location of the

charge. Because the singularity is eternal, this spacetime cannot arise as a solution of

a classically posed initial value problem; furthermore the stability of such a singularity

is as yet unknown. Several attempts have been made to solve these problems, but none
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have been completely successful so far.

Choosing a nonlinear electromagnetic Lagrangian density can solve the first of these

two problems, and can also manage to reduce the strength of the spacetime singularity.

One example of such a Lagrangian density is the one-parameter family proposed by Born

and Infeld[5]:

Lβ = ∗ 1

4πβ4

[
1−

√
1− β4 ∗ (F ∧ ∗F )− β8(∗(F ∧ F ))2

]
(1.3)

where β > 0 is a parameter that gives a limit to the size of the field. Lβ also has the

property that it reduces to the Lagrangian of the Maxwell-Maxwell system in the weak

field limit.

A. Shadi Tahvildar-Zadeh’s paper On the Static Spacetime of a Single Point Charge[12]

studies spherically symmetric, asymptotically flat, electrostatic solutions to nonlinear

electromagnetic theories. It is shown that when certain conditions are satisfied by the

aether law, there exists a solution of the Einstein-Maxwell system with that aether law,

unique in the spherically symmetric class, with the mildest possible singularity (a coni-

cal singularity1 on the time axis). However it is known that in reality, particles such as

electrons are not spherically symmetric - they possess an intrinsic angular momentum.

In this project, an infinitesimal perturbation is added to this spherically symmetric so-

lution. This perturbed quantity is reinserted into the Einstein-Maxwell system (keeping

only first-order terms), and the resulting linearised equations are investigated. There are

three possible outcomes of this calculation:

(i) ∃ a solution for each mass, charge and infinitesimal angular momentum, as was the

case in linear Maxwell theory.

(ii) ∃ a solution for some values of infinitesimal angular momentum but not for others,

meaning that the parameters mass, charge, angular momentum and β would have

to satisfy some constraint.

(iii) 6 ∃ solutions for nonzero infinitesimal angular momentum; or else ∃ solutions, but

with problems of infinite energy and/or a strong singularity. This would indicate

that the Born-Infeld Lagrangian may not be valid as a description of the real elec-

tron.

It has not yet been determined which of these possibilities holds. Several difficulties

have been encountered, most relating to the greatly increased length and complexity of

1A conical singularity is a point at which the limit of all covariant quantities are finite, but spacetime
is not smooth.
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the equations on addition of an infinitesimal perturbation. Because of this, alternative

methods for carrying out the calculation are currently being considered. One possibility

would be to return to the Lagrangian of the system and to use variational principles to

derive the linearised equations directly. It is hoped that the resulting equations will be

easier to work with than those that have been found using the original method.

The remainder of this work is organised as follows: In Section 2, the essential mathe-

matical concepts from differential geometry and tensor calculus will be introduced. Sec-

tion 3 will discuss the Einstein-Maxwell system of partial differential equations, which

describes the geometry of a spacetime endowed with an electromagnetic field. Section 4

will give an overview of the difficulties associated with point defects in electromagnetic

spacetime theories, and will introduce the concept of nonlinear electromagnetism as a

possible solution to these difficulties, in particular for a spherically symmetric space-

time. Section 5 will discuss an attempt to remove this spherical symmetry through an

infinitesimal perturbation.

8



2 Preliminary Mathematics

The purpose of this section is to introduce the essential mathematical concepts that were

needed for this project. Much of what follows is adapted from G.F.R. Ellis’s Course on

General Relativity.[7]

2.1 Spacetime

Spacetime is a four-dimensional manifold M (i.e. a topological space that is locally like

Cartesian space), whose points give the entire set of “events” in space and time where

objects can exist. Each event in spacetime can be described using four coordinates,

{xi} = (x0, x1, x2, x3)

which can be chosen arbitrarily. In general several overlapping coordinate systems are

needed to describe the whole of spacetime.

2.1.1 Tangent Vectors, Covectors and Differentials

A curve in spacetime is a local map of R1 into M, i.e. it is a one-dimensional set of

events in the spacetime, for example the history of a point particle in spacetime or the

path taken by a light-ray. The curve is denoted by xα(τ) where τ is the curve parameter.

Each curve is associated with a tangent vector that gives its direction in spacetime. This

vector has components

Xα =
dxα

dτ
(2.1)

If P is a point onM, then the tangent space TPM is the set of vectors that are tangent

to M at P . Components of tangent vectors are generally written with upper indices.

Given any vector space, the dual space is the set of all linear maps from the vector

space to R. The dual space of TPM is denoted T ∗PM, and is known as the co-tangent

space. Elements of T ∗PM are known as covectors (or one-forms), and their components

are written using lower indices to distinguish them from vectors.

If f :M→ R is a smooth function on the spacetime, its differential df ∈ T ∗PM at a

point P ∈M is defined by

df(XP )−XPf (2.2)

where XP is any vector in the tangent space TPM at P . The differential gives the

variation of the function across its level surfaces (i.e. surfaces of constant f), and has

components

dfα =
∂f

∂xα
(2.3)
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2.1.2 The Metric Tensor

Because space and time are merged together, the concepts of distance and time intervals

are not well-defined - they depend on the particular coordinate system being used. How-

ever, one can define a spacetime interval that gives a coordinate-independent concept of

“distance” on the spacetime manifold. The spacetime interval corresponding to a small

coordinate displacement dxµ = (dx0, dx1, dx2, dx3) is defined as 2

ds2 = gµν(x
α)dxµdxν (2.4)

where gµν(x
α) are components of the metric tensor. As an example, the metric ten-

sor for flat spacetime in polar coordinates {xα} = (t, r, θ, φ) can be written gµν =

diag(−1, 1, r2, r2 sin2 θ), giving the spacetime interval

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2

The signature of a metric is defined as the pair of integers (p, r) where p is the

number of positive eigenvalues of the metric and r is the number of negative eigenvalues.

Spacetime can be modelled as a 4-dimensional Lorentzian manifold, which is one with

signature (3, 1).

2.1.3 Static and Stationary Manifolds

A Killing field on a manifold is a vector field that preserves the metric.3 A Lorentzian

manifold M is called stationary if it has a Killing field whose orbits are complete and

everywhere timelike. It is called static if this Killing field is hypersurface-orthogonal

everywhere.

2.2 Tensors

When working in spacetime, the equations of physics should be valid regardless of the

coordinate system chosen. We must work with quantities that are invariant under a

change of coordinates (although their components may not be).

Suppose we change from coordinates {xα} to new coordinates {xα′}, which are given

by

xα
′
= xα

′
(xα) (2.5)

2Here we use Einstein’s Summation Convention, namely that whenever an index is repeated, it is
summed over the range of the index. So we have XαXα = X0X0 +X1X1 +X2X2 +X3X3.

3More precisely, a vector field X is a Killing field if the Lie derivative (see Section 2.2.4) with respect
to X of the metric g vanishes: LXg = 0.
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It is easy to show that the components of a vector Xα ∈ TPM (one upper index) in this

new coordinate system are given by

Xα′ = Aα
′

αX
α (2.6)

where

Aα
′

α =
∂xα

′

∂xα
(2.7)

Similarly, it can be shown that the components of a covector ω ∈ T ∗PM (one lower index)

transform as

ω′ = A α
α′ ω (2.8)

where A α
α′ is the inverse of Aα

′
α. In short, any quantity written with a single upper

index can be transformed using Equation 2.6, while any quantity written with a single

lower index can be transformed using Equation 2.8.

A tensor is a quantity that generalises these patterns for any number of upper and

lower indices, transforming each upper index in the same way as a vector and each lower

index in the same way as a differential. Thus a general tensor T µ1,...µrν1,...νs transforms as

follows:

T
µ′1...µ

′
r

ν′1...ν
′
s

= Aµ
′
1
µ1
· · ·Aµ′rµrA

ν1
ν′1
· · ·A νs

ν′s
T µ1...µrν1...νs (2.9)

A tensor with r upper indices and s lower indices is called an ( rs ) tensor.

The fundamental point of tensor transformations is that if a tensor equation is true

in one coordinate system, then it is true in all coordinate systems.

2.2.1 Algebraic Operations on Tensors

There are four basic algebraic operations on tensors:

(i) Linear Combination

Given two tensors of the same type, we may form a new tensor by taking a linear

combination. For example, if Rµ
ν and Sµν are tensors and α, β ∈ R, then

T µν = αRµ
ν + βSµν

is also a tensor.

(ii) Multiplication

Given any two tensors, they can be multiplied to form a new tensor. For example,
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if Rµ
ν and Sκλ are tensors, then

T µ κλ
ν ≡ (R⊗ S)µ κλ

ν = Rµ
νS

κλ

is also a tensor.

(iii) Contraction

Given a tensor with at least one upper index and at least one lower index, we can

form a new tensor by setting one upper and one lower index equal to one another

and summing over all possible values of the index. For example, if S ν
µ κλ is a tensor

then

Rµλ = S ν
µ νλ

is also a tensor.

(iv) Raising and Lowering Indices

To lower indices we contract with the metric tensor. For example,

Xα = gαβX
β

To raise indices we contract with the inverse metric tensor gαβ. For example,

Xα = gαβXβ

2.2.2 Covariant Differentiation

In order to set up differential equations for tensors that are valid in an arbitrary coordinate

system, one needs to define covariant differentiation of tensors. Differentiation of tensors

is problematic, because taking an ordinary partial derivative leads to a quantity that is

not in fact a tensor.

Instead, given two vectors X and Y , we define a map ∇Y : X → ∇XY , the covariant

derivative of Y along X. The covariant derivative has the following properties:

(i) Leibniz Rule

The standard Leibniz differentiation rule (D(fg) = D(f)g + fD(g)) applies to

covariant differentiation, i.e. for a scalar field f and vector fields X and Y ,

∇X(fY ) = f∇XY +X(f)Y (2.10)

where we have defined ∇Xf = X(f) for scalar fields f .

12



(ii) Linearity in lower argument

If f ,g are scalar fields and X,Y ,Z are vector fields then we have

∇fX+gZ(Y ) = f∇X(Y ) + g∇Z(Y ) (2.11)

(iii) Commutes with addition of vectors in the upper argument

∇X(Y + Z) = ∇XY +∇XZ (2.12)

In an arbitrary basis {eµ}, the covariant derivative ∇eν maps each basis vector eµ to a

vector field ∇eνeµ ≡ ∇νeµ, which can be written as a linear combination of basis vectors:

∇νeµ = Γλµν (2.13)

where the Γλµν are known as connection coefficients (or Christoffel symbols in a coordinate

basis). In a coordinate basis, the covariant derivative of a vector Xµ has components

Xµ
;ν = Xµ

,ν + ΓµνλX
λ (2.14)

where “;” denotes covariant differentiation and “,” denotes partial differentiation. The

Christoffel symbols can be defined in terms of the metric using the following relation:

Γµνλ = gµκ(gκλ,ν + gνκ,λ − gλν,κ) (2.15)

To extend the idea of covariant differentiation to arbitrary tensors, one can make use

of the properties of the covariant derivative mentioned above, along with the following

further property:

(iv) Commutes with contraction

For example, if Rµλ = S ν
µ νλ then Rµλ;κ = S ν

µ νλ;κ .

Using these properties, one finds the general rule for covariant differentiation of tensors

in a coordinate basis:

T µ1...µrν1...νs;λ = T µ1...µrν1...νs,λ + Γµ1σλT
σµ2...µr

ν1...νs
+ · · ·+ ΓµrσλT

µ1...σ
ν1...νs

− Γσν1λT
µ1...µr

σν2...νs
− · · · − ΓσνsλT

µ1...µr
ν1...σ

(2.16)
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2.2.3 Push-forward and Pull-back

If M and N are manifolds then a map h : M → N is said to be smooth if for every

function f : N → R the function f ◦ h :M→ R is smooth. If h is smooth, then it maps

a smooth curve γ in M to a smooth curve h ◦ γ in N .

If X ∈ TPM is a tangent vector to γ at a point P , then there exists a map

h∗ : TPM→ Th(P )N

known as the push-forward to h ◦ γ, which maps tangent vectors at P ∈ M to tangent

vectors at h(P ) ∈ N . If f : N → R is a smooth function, then

(h∗XP )(f) = XP (f ◦ h) (2.17)

Analogously, there is a map between covectors

h∗ : T ∗h(P )N → T ∗PM

known as the pull-back. If ω ∈ T ∗h(P )N and XP ∈ TPM, then

(h∗ω)(XP ) = ω(h∗XP ) (2.18)

If h is a diffeomorphism (i.e. differentiable and invertible with differentiable inverse), then

it is possible to generalise the definition of the pull-back to a vector (i.e. a tensor with a

single upper index). This can be very loosely defined as the push-forward of the vector

under the inverse map. Combining this with the definition of the pull-back of a covector,

one can generalise the pull-back as an operator on tensors with arbitrary indices.

2.2.4 The Lie Derivative

The Lie derivative is the tensor derivative associated with the process of dragging along.

If a tensor T is dragged along a one-parameter diffeomorphism h(τ) with infinitesimal

generator X, then the Lie derivative LX at a point P gives the rate of change of the

tensor in the direction of the curve. Mathematically, it is defined by

LXT =
∂

∂τ
((hτ )

∗T )P

∣∣∣
τ=0

(2.19)

where hτ=0 = P and ξ∗ is the pull-back operator.

In a coordinate basis, if Xα = ∂xα

∂τ
is tangent vector to a curve h(τ) = xα(τ) through
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P , then the coordinates of LXT are given by:

(LXT )µ1...µrν1...νs = T µ1...µrν1...νs,λX
λ − T λµ2...µrν1...νsX

µ1
,λ − · · · − T

µ1...λ
ν1...νs

Xµr
,λ

+ T µ1...µrλν2...νsX
λ
,ν1

+ · · ·+ T µ1...µrν1...λX
λ
,νs (2.20)

2.3 Differential Forms

A p-form is a
(

0
p

)
tensor that is completely antisymmetric. Given a p-form P and a

q-form Q we can form a (p+ q)-form P ∧Q defined by

P ∧Q = P ⊗Q−Q⊗ P (2.21)

In a coordinate basis, a p-form P can be written

P =
1

p!
Pµ1...µpdx

µ1 ∧ · · · ∧ dxµp (2.22)

where we have Pµ1...µp = P[µ1...µp]. Then the components of P ∧Q are given by

(P ∧Q)ν1ν2...νp+q =
(p+ q)!

p!q!
P[ν1...νpQνp+1...νp+q ] (2.23)

Two important operations on differential forms are the exterior derivative and the

Hodge star operator, both of which are essential for the coordinate-independent formu-

lation of Maxwell’s equations.

2.3.1 Exterior Derivative

The exterior derivative is a map “d”, which maps p-forms to (p+ 1)-forms, such that

d(Pµ1...µpdx
µ1 ∧ · · · ∧ dxµp) =

n∑
i=1

∂Pµ1...µp
∂xi

dxi ∧ dxµ1 ∧ · · · ∧ dxµp (2.24)

If A is a p-form such that dA = 0, we say A is closed. If there exists a (p − 1)-form

B such that A = dB then we say that A is exact.

2.3.2 Hodge Star Operator

If σµ1...µp is a p-form defined in four-dimensional spacetime then the Hodge star operator

acts on σ to give a (4− p)-form ∗σ defined by

∗σµ1...µ4−p =
1

p!
σν1...νpην1...νpµ1...µ4−p (2.25)
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where η is the volume form, given by

ηαβγδ = −
√
|g|εαβγδ (2.26)

where g = det(gµν) and εαβγδ is the totally anti-symmetric tensor:

εαβγδ =


1 if (α, β, γ, δ) is an even permutation of (0, 1, 2, 3)

−1 if (α, β, γ, δ) is an odd permutation of (0, 1, 2, 3)

0 otherwise

(2.27)
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3 The Einstein-Maxwell System

Here Einstein’s field equations for general relativity and the equations of electrodynamics

will be introduced. They will then be combined to form the Einstein-Maxwell system

of PDEs, which describes the geometry of a spacetime endowed with an electromagnetic

field.

3.1 Curvature and Einstein’s Field Equations

In order to distinguish between flat and curved spacetimes, one needs the concept of

curvature. There is no simple criterion for flatness based on the metric tensor itself, as

there are infinitely many coordinate systems to choose from, each of which produces a

different form for the metric.

3.1.1 The Riemann Curvature Tensor

The Riemann curvature tensor field is a ( 1
3 ) tensor field defined by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇XY−Y XZ (3.1)

where X,Y ,Z are vector fields. In a coordinate basis, its components are given by

R ν
µ λρ := Γνλµ,ρ − Γνρµ,λ + ΓσλµΓνρσ − ΓσρµΓνλσ (3.2)

The Riemann curvature tensor contains all the information on space-time curvature. In

particular, it vanishes if and only if spacetime is locally flat.

The curvature tensor has four important symmetries:

(i) It is skew-symmetric in the last pair of indices:

R ν
µ λρ = R ν

µ [λρ] (3.3)

(ii) Using the metric tensor to lower the second index, it is also skew in the first pair of

indices:

Rµνλρ = R[µν]λρ (3.4)

(iii) It obeys a cyclic identity:

Rµνλρ = Rµ[νλρ] (3.5)
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(iv) It is symmetric under interchange of the pairs of skew indices:

Rµνλρ = Rλρµν (3.6)

3.1.2 Contractions of the Curvature Tensor

Because of the above symmetries, there is only one non-trivial contraction of the Riemann

tensor:

Rµν := R λ
µ νλ (3.7)

This is called the Ricci tensor.

The Ricci scalar is formed by contracting the Ricci tensor:

R := Rµ
µ = gµνRµν (3.8)

One final contraction of the curvature tensor is the Kretschmann scalar

K := RαβγδR
αβγδ (3.9)

The Kretschmann scalar can be used to distinguish between coordinate singularities and

“real” singularities. Since K is a scalar, it is coordinate independent, so if a singular-

ity appears in the expression for K then this singularity is an intrinsic property of the

spacetime.

3.1.3 Einstein’s Field Equations

In general relativity, gravity is treated geometrically, as due to spacetime curvature.

Einstein’s basic idea was that matter determines the geometry of spacetime.

There is one tensor that is characteristic of all types of matter, the stress-energy tensor

Tµν . Hence it is this tensor that is used in the equations that determine the spacetime

structure, through Einstein’s field equations:4

Gµν = κTµν (3.10)

where κ is a coupling constant and Gµν is Einstein’s tensor, defined as follows:

Gµν := Rµν −
1

2
Rgµν (3.11)

4More generally, these equations are Gµν + Λgµν = κTµν where Λ is the cosmological constant. Here
we will set Λ = 0.
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So we have

Rµν −
1

2
Rgµν = κTµν (3.12)

The constant κ can be obtained by comparison with the Newtonian limit and is found to

be equal to 8πG, where G is Newton’s gravitational constant.

Multiplying Einstein’s field equations by gµν and contracting gives

R− 1

2
R(4) = κT (3.13)

where T = gµνTµν is the trace of the stress-energy tensor. Rearranging, one finds that

R = −κT (3.14)

and substituting back into Equation 3.12 gives an alternate form of the Einstein Field

Equations:

Rµν = κ

(
Tµν −

1

2
Tgµν

)
(3.15)

3.1.4 ADM Mass

In general relativity, there is no local quantity that behaves like classical energy, since

there is no good local definition of mass and energy. This is clear if one considers the

following. Intuition tells us that

(i) Mass is additive.

(ii) Energy and mass are related by E = mc2.

(iii) A stable configuration is achieved when the total energy of the system is ≤ the

energies of the individual components.

Clearly, these three statements contradict each other, so the classical definitions of mass

and energy cannot be used consistently.

However, it is possible to introduce a global definition. For a spacetime that is asymp-

totically flat (i.e. approaches Minkowski space at infinity), we can define a total mass,

known as the ADM mass, which essentially gives the strength of the gravitational field

at infinity.

3.2 Equations for Electrodynamics

The equations for electrodynamics can be formulated in a coordinate-independent way

using differential forms. Here we will introduce the concepts for a general nonlinear theory.
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They can then be easily specialised to the linear Maxwell case by choosing the appropriate

Lagrangian. Much of what follows is adapted from A. Shadi Tahvildar-Zadeh’s paper,

On the Static Spacetime of a Single Point Charge.[12]

3.2.1 Source-Free Maxwell Equations

Suppose (M, g) is a 4-dimensional Lorentzian manifold. If a is a 1-form, f is a 2-form

and Lem(a, f) is a 4-form on M, then the electromagnetic action is by definition

S[a] :=

∫
Lem(a, da) (3.16)

A critical point of S with respect to variations of a is called an electromagnetic poten-

tial A, and its exterior derivative is the electromagnetic Faraday tensor F = dA. By

definition, the Maxwell tensor M is

M =
∂Lem
∂f

∣∣∣∣
a=A,f=F

(3.17)

The source-free Maxwell equations are the Euler-Lagrange equations for stationary points

of S, and are equivalent to the system{
dF=0 (3.18a)

dM=0 (3.18b)

It can be shown that in four-dimensional spacetime, every Lorentz-invariant gauge-

invariant source-free electromagnetic Lagrangian Lem can be written in the form

Lem(a, f) = −l(x(f), y(f))ε[g] (3.19)

where x and y are the electromagnetic invariants:

x(f) := −1

2
∗ (f ∧ ∗f) =

1

4
fµνf

µν (3.20)

y(f) :=
1

2
∗ (f ∧ f) =

1

4
fµν ∗ fµν (3.21)

It is clear from Equations 3.17 and 3.19 that ∗Lem = l and

∗M =
∂l

∂F
= lxF + ly ∗ F (3.22)

This relation between M and F is known as an “aether law”. For linear Maxwell theory,

we have l = x and M = − ∗ F .
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3.2.2 Electrostatics

Suppose K is a timelike Killing field for the manifold, and define X := g(K,K). Let

E := iKF (3.23)

B := iK ∗ F (3.24)

D := iK ∗M = lxE + lyB (3.25)

H := iK ∗ ∗M = −iKM = −lyE + lxB (3.26)

where iK denotes the interior product with the vector field K (i.e. (iKF )ν = KµFµν). A

general aether law will specify D and B as functions of E and H or vice versa.

Using Equations 3.23 and 3.24, we can rewrite the quantities x and y defined in

Equations 3.20 and 3.21 above as

x =
|E|2 − |B|2

2X
(3.27)

and

y =
E ·B
X

(3.28)

It is clear that y = 0 whenever either E = 0 or B = 0. Furthermore, note that conserva-

tion of parity implies that l(x, y) = l(x,−y), so that if we assume that l is differentiable

in each argument with continuous first derivative, then ly(x, 0) = 0. Hence we can say

that whenever either E = 0 or B = 0, ly = 0 also. Now using Equations 3.25 and 3.26 it

is easy to see that in this case,

D = lxE (3.29)

and

H = lxB (3.30)

Thus E = 0 implies D = 0 and B = 0 implies H = 0.

Finally, the invariance of the equations under interchange of D with B and E with

H implies that the system of equations in the case E ≡ 0 is formally the same as that in

the case H ≡ 0. Thus in the case of electrostatic spacetimes (H = 0), we have B = 0,

and hence y = 0. So we can say that in the case of electrostatics,

l(x, y) = l(x) (3.31)
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3.2.3 Stress-Energy Tensor

Finally, the stress-energy tensor T corresponding to l is a symmetric ( 0
2 ) tensor field on

M defined by

Tµν = 2
∂l

∂gµν
− gµνl (3.32)

For the case of the electromagnetic Lagrangian as defined in Equation 3.19, this yields

Tµν = 2(lx
1

2
FµλF

λ
ν + lyFµλ ∗ F λ

ν )− gµνl = FµλM
λ

ν − gµνl (3.33)

3.3 The Einstein-Maxwell System of PDEs

Combining Equations 3.10 and 3.18 gives the Einstein-Maxwell system of Partial Differ-

ential Equations: 
Rµν −

1

2
Rgµν = κTµν (3.34a)

dF = 0 (3.34b)

dM = 0 (3.34c)

which describes the geometry of a spacetime (M, g) endowed with an electromagnetic

field.

In a static spherically symmetric spacetime (x0, x1, x2, x3) = (t, r, θ, φ), the metric can

be written in the form

gµνdx
µdxν = −eξdt2 + eρdr2 + r2(dθ2 + sin2 θdφ2) (3.35)

where (θ, φ) are spherical coordinates on the orbit spheres, and ξ = ξ(r) and ρ = ρ(r)

are smooth functions that depend on the choice of aether law. It can be shown[12] that

as a consequence of the Einstein-Maxwell system, ρ = −ξ, and we have

gµνdx
µdxν = −eξdt2 + e−ξdr2 + r2(dθ2 + sin2 θdφ2) (3.36)
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4 Point Defects in Electromagnetic Theory

The motivation for this project comes from the search for a consistent theory of electro-

magnetism that can describe the spacetime of a single point charge. The purpose of this

section is to give a brief overview of the problem and the attempts that have been made

to resolve it.

4.1 Linear Maxwell Theory

The simplest choice of aether law is Maxwell’s M = −∗F , corresponding to a Lagrangian

with l = x. In this case, the Einstein-Maxwell system (Equations 3.34) becomes the

“Einstein-Maxwell-Maxwell” system.

4.1.1 Reissner-Weyl-Nordström Spacetime

The unique spherically symmetric asymptotically flat solution of this system is known

as the Reissner-Weyl-Nordström spacetime (RWN). Spherical symmetry implies that the

electromagnetic field tensor can be written

F = Er(r, t)dt ∧ dr +Br(r, t)dθ ∧ dφ (4.1)

This can be further simplified by noting that the nonexistence of magnetic monopoles

implies that Br(r) = 0, so we have

F = Er(r, t)dt ∧ dr (4.2)

Using Equation 3.34c with M = − ∗ F gives

d ∗ F = ∂µ(Er
√
−g)dxµ ∧ dθ ∧ dφ = 0 (4.3)

with
√
−g = r2 sin θ. Taking µ = 0 (the t-component) implies that E(r, t) = E(r), while

taking µ = 1 (the r-component) gives

∂

∂r
(Er(r)r

2) = 0 (4.4)

⇒ Er(r) = −q0

r2
(4.5)
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where q0 is a constant, corresponding to the total charge of the spacetime. This corre-

sponds to an electromagnetic potential

A = ψ(r)dt (4.6)

where

ψ(r) =
q0

r
(4.7)

In linear Maxwell theory the stress-energy tensor for the electromagnetic field is given by

Tµν = FµρF
ρ
ν −

1

4
gµνFρσF

ρσ (4.8)

This is traceless (T = 0), so the Einstein Field Equation 3.15 becomes

Rµν = κTµν (4.9)

We will now consider only the θθ-component of this equation. It is easy to see that

Tθθ = −1

4
r2FρσF

ρσ =
q2

0

2r2
(4.10)

Furthermore, using Equations 2.15, 3.2 and 3.7 one can show that

Rθθ = 1− eξ − eξr∂ξ
∂r

(4.11)

Substituting Equations 4.10 and 4.11 into Equation 4.9 and solving for eξ results in the

following solution:5

eξ =

(
1− 2m0

r
+
q2

0

r2

)
(4.12)

where the constant m0 is equal to the ADM mass, and was chosen so that the metric

would become the Schwarzschild solution6 in the limit q0 → 0.

The empirical charge-to-mass ratios of charged particles such as the electron and the

proton (1018 and 1022 respectively) fit with the “superextremal regime”, where |q0| > m0.

It can be easily shown that in this case, the metric coefficient eξ is always positive,

(t, r, θ, φ) is a global coordinate system for the manifold, and the only singularity present

is on the timelike axis r = 0.

5Here the units have been chosen so that κ = 1.
6The Schwarzschild solution describes the spacetime outside a spherical mass with zero electric charge

and angular momentum.
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4.1.2 Problems with Infinite Self-Energy

The RWN solution has several difficulties associated with it, one of which is that the

self-energy of the point charge is infinite. In general relativity, mass and energy are

equivalent, so the total electrostatic energy will always make a contribution to the ADM

mass of the spacetime. In the case of RWN, the total electrostatic energy carried by a

time-slice is ∫ ∞
0

|dψ|2r2 =

∫ ∞
0

q2
0

r2
dr (4.13)

which clearly makes an infinite contribution in the case of nonzero charge q0.

The problem of the infinite self-energy of a point charge can be seen in classical

Maxwell-Lorentz electrodynamics even before being coupled to gravity via the Einstein

Field Equations.[10] Maxwell’s electromagnetic field equations read:

1

c

∂

∂t
B(t, s) = −∇× E(t, s) (4.14)

1

c

∂

∂t
D(t, s) = ∇×H(t, s)− 4π

1

c
j(t, s) (4.15)

∇ ·B(t, s) = 0 (4.16)

∇ ·D(t, s) = 4πρ(t, s) (4.17)

where c is the speed of light in a vacuum, B is the magnetic induction field, E is the

electric field, D is the electric displacement field, H is the magnetic field, ρ is the electric

charge density and j is the electric current vector-density. The latter two satisfy the local

law of charge conservation,
∂

∂t
ρ(t, s) +∇ · j(t, s) = 0 (4.18)

In addition, we have a “constitutive law” for matter-free space:

H(t, s) = B(t, s) (4.19)

E(t, s) = D(t, s) (4.20)

For a single electron with position vector Q(t) ∈ R3, we have

ρ(t, s) = −eδQ(t)(s) (4.21)

j(t, s) = −eδQ(t)(s)Q̇(t) (4.22)

This assumes the electron to be a point particle with charge −e. For motion t → Q(t),
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the Maxwell-Lorentz field equations are satisfied by

Eret(t, s) = −e 1

(1− n · Q̇(t))3

(
n− Q̇/c

γ2r2
+

n× [(n− Q̇/c)× Q̈/c2]

r

)∣∣∣∣
ret

(4.23)

Bret(t, s) = n|ret × Eret(t, s) (4.24)

where n = (s −Q(t))/r, r = |s −Q(t)| and γ = (1 − |Q̇(t)|2/c2)−1/2, and “ret” means

that the function is to be evaluated at the retarded time tret defined by c(t − tret) =

|s−Q(tret)|. These are known as the “Liénard-Wiechert fields”.

It is found that the Lorentz force

F(t) = −e
[
E(t,Q(t)) +

1

c
Q̇(t)×B(t,Q(t))

]
(4.25)

provides a highly accurate equation of motion for a test particle in an external field.

However, it is clear that fundamentally there is no such thing as a “test charge”. We

must therefore consider the solutions to the field equations with the point charge as a

source (i.e. Equations 4.23 and 4.24). However, these equations lead to a Lorentz “self-

force” that is infinite in all directions (i.e. for any limit s → Q(t), the field magnitudes

diverge to infinity while their limiting directions depend on how the limit is taken).

Attempts have been made to get past this problem by taking the limit R → 0 over

a sphere of radius R centred at Q(t). However, it can be shown[6] that such a method

does not lead to a finite self-force, unless the acceleration vanishes at time t.

Renormalisation techniques[1], such as assuming the point charge to possess a “bare

mass” of −∞, have also been used in an attempt to remedy this problem, but these

techniques are really more of an ad hoc procedure than a solution to the problem.

One further attempt at a solution was the “action-at-a-distance” theory, which asserts

that a point charge is not directly affected by its own Liénard-Wiechert field.[13] However,

this solution introduces other problems; in particular it is impossible to compute the

accelerations of point charges at time t0 without knowing the states of motion of all point

electrons at infinitely many instances in the past and future.

4.1.3 Problems with the Naked Singularity

Another problem with the RWN solution is the presence of a strong naked singularity on

the time axis, i.e. when r = 0. The Kretschmann scalar for the RWN metric is

K = RαβγδR
αβγδ =

48

r6

(
m2

0 −
2m0q

2
0

r
+

7q4
0

6r2

)
(4.26)
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It is clear that the worst part of the singular behaviour at r = 0 arises from the contri-

bution of the charge q0.

It has been shown[11] that for |q0|/m0 > 2 naked singularities such as this one are

linearly stable, but stability has not yet been proved in the nonlinear case (in fact, there

is some confusion as to how this problem can even be formulated). Furthermore, the fact

that the singularity is eternal means that the spacetime cannot arise as a solution of a

classically-posed initial value problem.

4.2 Nonlinear Maxwell Theory

In order to overcome the problem of the infinite self-energy of a point charge, Max Born

proposed to make the Maxwell equations nonlinear.[4] He suspected that these equations

were valid only asymptotically, in the weak field limit. The new Lagrangian density

needed to satisfy the following requirements:

(i) It must be Lorentz invariant, i.e. it must be unchanged under transformations of

the form

Xµ → Λµ
νX

ν (4.27)

with det(Λµ
ν) = +1.

(ii) It must be Weyl gauge invariant, i.e. it must be unchanged under transformations

of the form

Aµ → Aµ + ∂µf (4.28)

where f is a scalar field.

(iii) In the weak field limit it must reduce to the Maxwell-Maxwell Lagrangian:

L0 = − 1

8π
F ∧ ∗F (4.29)

(iv) It must yield finite field-energy solutions with point charge sources.

A one-parameter family of equations that satisfies these conditions is the set of Maxwell-

Born-Infeld field equations. In this case, the Lagrangian density is[5]

Lβ = ∗ 1

4πβ4

[
1−

√
1− β4 ∗ (F ∧ ∗F )− β8(∗(F ∧ F ))2

]
(4.30)

where β > 0 is a parameter that gives a limit to the size of the field. Note that this is the

only Lagrangian that both satisfies the above conditions, and has electromagnetic field

equations that are completely linearly degenerate.[3]
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In the case of electrostatics, l(x, y) = l(x) (Equation 3.31), and we have

Lβ = ∗ 1

4πβ4

[
1−

√
1− β4 ∗ (F ∧ ∗F )

]
(4.31)

In the weak-field limit,

Lβ ≈ ∗ 1

4πβ4

[
1− (1− 1

2
β4 ∗ (F ∧ ∗F ))

]
(4.32)

=
1

4πβ4

β4

2
∗ ∗(F ∧ ∗F ) (4.33)

= − 1

8π
F ∧ ∗F (4.34)

which is the Maxwell-Maxwell Lagrangian (the last line uses the fact that ∗∗ = −1).

Near r = 0, the fields are stronger and this approximation is no longer valid, so one

must use the completely nonlinear regime. In the electrostatic strong-field limit, this

leads to an asymptotic Lagrangian

Lβ ≈
1

4πβ4

√
−β4 ∗ (F ∧ ∗F ) (4.35)

This Lagrangian leads to finite limits of the field strengths, and solves the problem of the

infinite self-energy of a point charge. In addition, it is actually able to reduce the strength

of the spacetime singularity that is present when the theory is coupled to gravity.[9] In

this way it manages to deal with both of the problems discussed in Sections 4.1.2 and

4.1.3.

4.3 Static Spherically Symmetric Spacetime of a Single Point

Charge

The solution of the Einstein-Maxwell system (Equations 3.34) depends upon the choice of

aether law, which in turn depends upon the choice of Lagrangian. Here we will consider

aether laws that are derivable from a Lagrangian, and that agree with that of Maxwell

in the weak field limit.

The stress-energy tensor T , defined in Equation 3.33, is said to satisfy the Dominant

Energy Condition if

(i) TµνY
µY ν ≥ 0 for every future-directed timelike vector Y .

(ii) The vector −T µν Y ν is future-directed causal when Y is future-directed causal.

Essentially, this means that mass energy never flows faster than the speed of light, c.
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It has been shown[12] that for any aether law that is derivable from a Lagrangian, sat-

isfies the Dominant Energy Condition, agrees with Maxwell in the weak field limit and has

a corresponding Hamiltonian satisfying certain growth conditions, there exists a unique

electrostatic, spherically symmetric, asymptotically flat solution of the Einstein-Maxwell

system with that aether law. Uniqueness is shown by a generalisation of Birkhoff’s

Theorem[2], which states that any spherically symmetric solution of the vacuum field

equations is locally isometric to a region in Schwarzschild spacetime (and has been ex-

tended to prove uniqueness of the RWN solution in the case of spherical symmetry[8]).

This unique solution has a conical singularity on the time axis, which is the mildest

possible singularity, and gives the spacetime the topology of R4 minus a line. It is found

that the deficit angle of the conical singularity is proportional to the mass-to-charge ratio

m0/|q0|, which is empirically small in the case of the electron and proton; hence in these

cases the deviation from Minkowski spacetime is relatively small. In addition, the small

mass-to-charge ratio means that, as in the case of RWN, there are no horizons of any kind

and no trapped null geodesics. However, unlike the RWN solution, the naked singularity

of this spacetime is gravitationally attractive.[12]

It can also be demonstrated that the electric field E is smooth everywhere except

at r = 0, where there is a point defect at which the direction of the field is undefined.

However, the total electrostatic energy of the field is finite and equal to the ADM mass of

the spacetime, meaning that the mass of the point charge is entirely of electromagnetic

origin.[12]
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5 Removing Spherical Symmetry

It is known that in reality, particles such as electrons are not in fact spherically symmetric

- they possess an intrinsic angular momentum or “spin”. This section discusses an attempt

to study the effects of an infinitesimal perturbation of the spherically symmetric solution

on the spacetime of a point charge.

5.1 Infinitesimal Perturbation

As a first step to investigating how loss of spherical symmetry affects the spacetime, a

one-parameter family of solutions to the Einstein-Maxwell system (g̃, F̃ ) was considered,

such that

(g̃|ε=0, F̃ |ε=0) = (g, F ) (5.1)

This family was expanded to first order in ε, giving

(g̃, F̃ ) ≈ (g + ε(∂εg)|ε=0, F + ε(∂εF )|ε=0) (5.2)

This is equivalent to perturbing each of g and F by an infinitesimal quantity, so that

gµν → g′µν = gµν + εXµν (5.3)

and

Fµν → F ′µν = Fµν + εYµν (5.4)

where gµν and Fµν are the unique solutions to the static and spherically symmetric

Einstein-Maxwell system for some Lagrangian (such as the Born-Infeld Lagrangian), as

discussed in Section 4.3, and ε is an infinitesimally small quantity such that ε2 = 0. The

tensors Xµν and Yµν are essentially the first derivatives of g and F with respect to the

parameter ε, and were taken to have the following properties:

(i) Time independence: Xµν,t = 0 and Yµν,t = 0

This condition follows from the fact that only stationary solutions are being studied

here.

(ii) Azimuthal symmetry : Xµν,φ = 0 and Yµν,φ = 0

This condition can be imposed without loss of generality by choosing the z-axis to

coincide with the direction of angular momentum of the particle.

Furthermore, X is taken to be symmetric:

Xµν = Xνµ

30



while Y is taken to be antisymmetric:

Yµν = −Yνµ

These conditions follow from the symmetry properties of the metric tensor and the Fara-

day tensor respectively.

5.2 Linearising the Einstein-Maxwell System

The new values for gµν and Fµν defined above were inserted into the Einstein-Maxwell

system (Equations 3.34), neglecting terms of order ε2. The result was a new set of

equations for the quantities Xµν and Yµν . Of these, the only solutions that are physically

meaningful are those defined modulo the Lie derivative of g and F (see Section 5.4.1).

5.2.1 Ricci Tensor and Ricci Scalar

The Christoffel symbols for the perturbed solution were calculated using Equation 2.15:

Γµνλ = g′µκ(g′κλ,ν + g′νκ,λ − g′λν,κ)

where

g′µν = gµν − εXσκg
σµgκν (5.5)

and

gµν = diag(−eξ, e−ξ, r2, r2 sin2 θ) (5.6)

i.e. the unperturbed spherically symmetric metric tensor.

These values for Γµνλ could then be used to calculate components of the Riemann

tensor using Equation 3.2

R ν
µ λρ := Γνλµ,ρ − Γνρµ,λ + ΓσλµΓνρσ − ΓσρµΓνλσ

Finally, by contracting over the second and fourth indices, the Ricci tensor Rµν could be

constructed, as in Equation 3.7:

Rµν = R λ
µ νλ

The values obtained for the Ricci tensor when spherical symmetry was removed are as
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follows:

Rtt =
1

2
e2ξ

(
∂2ξ

∂r2
+

(
∂ξ

∂r

)2

+
2

r

∂ξ

∂r

)
+ ε

[
− 1

4
eξ
(
∂ξ

∂r

)2

Xtt

+ eξ
(

1

4

∂ξ

∂r
− 1

r

)
Xtt,r −

1

2r2

cos θ

sin θ
Xtt,θ −

1

2
eξXtt,rr −

1

2r2
Xtt,θθ

− eξ
(

1

2

∂2ξ

∂r2
− 1

4
e2ξ

(
∂ξ

∂r

)2

− 1

r

∂ξ

∂r

)
Xrr +

1

2
eξ
∂ξ

∂r

(
1

2
e2ξ − 1

)
Xrr,r

+
1

2r2
e2ξ ∂ξ

∂r

(
cos θ

sin θ
Xrθ −Xrθ,θ +

1

2
Xθθ,r −

2Xφφ

r sin2 θ
+
Xφφ,r

sin2 θ

)]
(5.7)

Rtr = Rrt = ε

[
1

2
eξ

((
∂ξ

∂r

)2

+
∂2ξ

∂r2
− 2

r

∂ξ

∂r

)
Xtr + eξ

∂ξ

∂r
Xtr,r −

1

2r2

(
cos θ

sin θ
Xtr,θ

−Xtr,θθ −
cos θ

sin θ

∂ξ

∂r
Xtθ +

cos θ

sin θ
Xtθ,r −

∂ξ

∂r
Xtθ,θ +Xtθ,rθ

)]
(5.8)

Rtθ = Rθt = ε

[
(eξ + e−ξ)

(
∂ξ

∂r
− 1

2r

)
Xtr,θ −

1

2
e−ξXtr,rθ +

1

r
eξ
∂ξ

∂r
Xtθ

+

(
1

2r
(eξ + e−ξ)−

(
1

2
eξ + e−ξ

)
∂ξ

∂r

)
Xtθ,r +

1

2
e−ξXtθ,rr

]
(5.9)

Rtφ = Rφt = ε

[
− 1

r
eξ
∂ξ

∂r
Xtφ +

(
1

4
(eξ − 2e−ξ)

∂ξ

∂r
+

1

2r
(eξ + e−ξ)

)
Xtφ,r

+
1

2
e−ξXtφ,rr +

1

2r2

cos θ

sin θ
Xtφ,θ −

1

2r2
Xtφ,θθ

]
(5.10)
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Rrr = −1

2

(
∂2ξ

∂r2
+

(
∂ξ

∂r

)2

+
2

r

∂ξ

∂r

)
+ ε

[
− e−ξ

(
1

2

∂2ξ

∂r2
+

5

4

(
∂ξ

∂r

)2
)
Xtt

− 1

4
e−ξ

∂ξ

∂r
Xtt,r +

1

2
e−ξXtt,rr −

(
1

4
e2ξ

(
∂ξ

∂r

)2

− eξ

r

∂ξ

∂r

)
Xrr

+ eξ
(

1

4

∂ξ

∂r
+

1

r

)
Xrr,r −

1

2r2

cos θ

sin θ
Xrr,θ −

1

2r2
Xrr,θθ +

1

2r2

cos θ

sin θ

∂ξ

∂r
Xrθ

+
1

r2

cos θ

sin θ
Xrθ,r +

1

2r2

∂ξ

∂r
Xrθ,θ +

1

r2
Xrθ,rθ +

(
1

4r3

∂ξ

∂r
− 1

r4

)
Xθθ

+

(
1

r3
− 1

4r2

∂ξ

∂r

)
Xθθ,r −

1

2r2
Xθθ,rr +

1

r2 sin2 θ

((
1

2r

∂ξ

∂r
− 1

r2

)
Xφφ

+

(
1

r
− 1

2

∂ξ

∂r

)
Xφφ,r −

1

2
Xφφ,rr

)]
(5.11)

Rrθ = Rθr = ε

[
− 1

2
e−ξ
(

1

2

∂ξ

∂r
+

1

r

)
Xtt,θ +

1

2
e−ξXtt,rθ +

1

2
eξ
(

5

2

∂ξ

∂r
+

1

r

)
Xrr,θ

− 1

2
eξ
(

1

r

∂ξ

∂r
+

3

r2

)
Xrθ +

1

2r2

cos θ

sin θ

(
−2

r
Xθθ +Xθθ,r −

2

r
Xφφ +Xφφ,r

)

+
1

2

1

r2 sin2 θ

(
2

r
Xφφ,θ −Xφφ,rθ

)]
(5.12)

Rrφ = Rφr = ε

[
eξ
(

1

r

∂ξ

∂r
cos2 θ − 1

2r

∂ξ

∂r
sin2 θ +

sin2 θ

r2

)
Xrφ

]
+
eξ

r
cos2 θXrφ,r

− 1

2r2

cos θ

sin θ
Xrφ,θ −

1

2r2
Xrφ,θθ +

1

2r2

cos θ

sin θ

(
2

r
Xθφ −Xθφ,r

)
− 1

r3
Xθφ,θ +

1

2r2
Xθφ,rθ (5.13)
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Rθθ = 1− eξ − eξ ∂ξ
∂r
r + ε

[
− 1

2
r
∂ξ

∂r
Xtt +

1

2
rXtt,r +

(
3re3ξ ∂ξ

∂r
+

1

2
re2ξ ∂ξ

∂r
+ e3ξ

)
Xrr

+

(
e3ξr − 1

2
e2ξr

)
Xrr,r −

1

2
eξXrr,θθ +

eξ

r

cos θ

sin θ
Xrθ + eξ

(
1

r
+
∂ξ

∂r

)
Xrθ,θ

+ eξXrθ,rθ −
1

r2
eξXθθ −

1

2
eξ
(
∂ξ

∂r
+

1

r

)
Xθθ,r +

1

2r2

cos θ

sin θ
Xθθ,θ

− 1

2
eξXθθ,rr +

1

r2 sin2 θ

(
eξ

sin2 θ
+ 1

)
Xφφ −

eξ

2r sin2 θ
Xφφ,r

− cos θ

r2 sin3 θ
Xφφ,θ +

1

2r2 sin2 θ
Xφφ,θθ

]
(5.14)

Rθφ = Rφθ = ε

[
− eξ cos θ

sin θ

(
∂ξ

∂r
− 1

r
+

sin2 θ

r

)
Xrφ − eξ

cos θ

sin θ
Xrφ,r +

1

2
eξ
∂ξ

∂r
Xrφ,θ

+
1

2
eξXrφ,rθ +

1

r2
(1− 2eξ)Xθφ +

1

2r
eξXθφ,r −

1

2
eξXθφ,rr

]
(5.15)

Rφφ = sin2 θ

(
1− eξ − eξ ∂ξ

∂r
r

)
+ ε

[
− r

2
sin2 θ

∂ξ

∂r
Xtt +

r

2
sin2 θXtt,r

+
1

2
sin θ cos θe−ξXtt,θ − e2ξ sin2 θ

(
1 +

3

2
r
∂ξ

∂r

)
Xrr −

3

2
e2ξr sin2 θXrr,r

− 1

2
eξ sin θ cos θXrr,θ + eξ sin θ cos θ

(
1

r
− ∂ξ

∂r

)
Xrθ − eξ sin θ cos θXrθ,r

+
eξ

r
sin2 θXrθ,θ −

1

r2
(sin(2θ) + cos(2θ) + eξ sin2 θ)Xθθ −

1

2r
eξ sin2 θXθθ,r

+
1

2r2
sin θ cos θXθθ,θ −

1

r2

(
eξ − cos2 θ

sin2 θ

)
Xφφ +

1

2
eξ
(

1

r
+
∂ξ

∂r

)
Xφφ,r

+
1

r2

cos θ

sin θ
Xφφ,θ +

1

2
eξXφφ,rr +

1

4r2
eξ sin θ cos θXφφ,θθ

]
(5.16)

The Ricci scalar R was then constructed using Equation 3.8:

R = gµνRµν
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with the following result:

R =
2

r2
− eξ

(
∂2ξ

∂r2
+

(
∂ξ

∂r

)2

− 4

r

∂ξ

∂r
+

2

r

)
+ ε

[
−

(
∂2ξ

∂r2
+

3

2

(
∂ξ

∂r

)2

+
2

r

∂ξ

∂r

)
Xtt

+

(
2

r
− 1

2

∂ξ

∂r

)
Xtt,r +

e−ξ

r2

cos θ

sin θ
Xtt,θ +Xtt,rr +

eξ

2r2
Xtt,θθ +

(
e2ξ

r
(eξ − 1)

+
1

2
(1 + e2ξ)

∂2ξ

∂r2
+
e2ξ

2

(
1− eξ

2

)(
∂ξ

∂r

)2

+
1

r

∂ξ

∂r
(3e3ξ − e2ξ − 1)

)
Xrr

+

(
1

2

∂ξ

∂r
+

2e2ξ

r
+
e3ξ

r

)
Xrr,r −

eξ

r2

cos θ

sin θ
Xrr,θ −

eξ

r2
Xrr,θθ +

eξ

r3

cos θ

sin θ

(
2

r
− ∂ξ

∂r

)
Xrθ

+
eξ

r

(
3

2

∂ξ

∂r
+

2

r

)
Xrθ,θ +

2eξ

r2
Xrθ,rθ +

(
1

r4
− 3

4r3

∂ξ

∂r
− 4eξ

r4

+
sin(2θ) + cos(2θ)

sin2 θ

)
Xθθ −

eξ

r2

∂ξ

∂r
Xθθ,r +

eξ

2r3 sin3 θ

∂ξ

∂r
Xφφ

+
eξ

r2 sin2 θ

(
1

2

∂ξ

∂r
+

1

r

)
Xφφ,r +

1

2r4

(
1

sin2 θ
+

cos θ

2 sin θ

)
Xφφ,θθ

]
(5.17)

5.2.2 Lagrangian

Recall Equations 3.19, 3.20 and 3.21, which demonstrate how the Lorentz-invariant gauge-

invariant source-free Lagrangian depends only upon the electromagnetic invariants x and

y, which in turn depend upon the Faraday tensor. The electromagnetic invariants are

given by

x =
1

4
FµνF

µν

and

y =
1

4
Fµν ∗ F µν

When perturbed using Equations 5.3 and 5.4, neglecting terms of order ε2, they become

x =
1

4
FµνF

µν +
1

2
ε
[
Fµνg

µλgνκYλκ − FµνgµλXνκFλκ
]

(5.18)

and

y =
1

4
Fµν ∗ F µν − ε 1

48r2| sin θ|
εµνλκ

[
2FµνYλκ

+
1

2

(
e−ξXtt − eξXrr −

Xθθ

r2
− Xφφ

r2 sin2 θ

)
FµνFλκ

]
(5.19)
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The extra terms in the expression for y come from the fact that the Hodge star operator

depends on the determinant of the metric, which varies as follows under the perturbation:

|g| = r4 sin2 θ

[
1 + ε

(
−e−ξXtt +Xrre

ξ +
Xθθ

r2
+

Xφφ

r2 sin2 θ

)]
(5.20)

Using Equations 5.18 and 5.19, it is easy to find how the derivatives of l vary under the

perturbation:

lx → lx + ε

(
lxx
∂x

∂ε
+ lxy

∂y

∂ε

)
(5.21)

and

ly → ly + ε

(
lyx
∂x

∂ε
+ lyy

∂y

∂ε

)
(5.22)

The variation in l itself can be found in the same way:

l→ l + lx
∂x

∂ε
+ ly

∂y

∂ε
(5.23)

5.2.3 Maxwell Tensor

Equation 3.22 gives an expression for ∗M in terms of F , lx and ly. Since the effect of

the perturbation on the latter three quantities is known (Equations 5.4, 5.21 and 5.22

respectively), this equation can be used to find the variation in ∗M . The result is as

follows:

(∗M)ρσ = lxFρσ + ly
1

2
εαβρσr

2| sin θ|gαγgβδFγδ + ε

[(
lxx

1

2

(
Fµνg

µνgνκYνκ

− FµνgµλXνκFλκ

)
− lxy

1

48r2| sin θ|
εµνλκ

(1

2

(
e−ξXtt − eξXrr

− Xθθ

r2
− Xφφ

r2 sin2 θ

)
FµνFλκ + 2FµνYλκ

))
Fρσ + lxYρσ

+
1

2
r2| sin θ|εαβρσgαγgβδFγδ

(
lyx

1

2

(
Fµνg

µλgνκYλκ − FµνgµλXνκFλκ

)
− lyy

1

48r2| sin θ|
εµνλκ

(1

2

(
e−ξXtt − eξXrr −

Xθθ

r2
− Xφφ

r2 sin2 θ

)
FµνFλκ

+ 2FµνYλκ

))
+ ly

1

2
εαβρσr

2| sin θ|
(

1

2

(
e−ξXtt − eξXrr −

Xθθ

r2

− Xφφ

r2 sin2 θ

)
gαγgβδFγδ + 2XαγgβδFγδ + gαγgβδYγδ

)]
(5.24)
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Using the fact that ∗∗ = −1, the value of the Maxwell tensor can be found by applying

the Hodge star operator to both sides of Equation 5.24:

M = − ∗ (∗M) (5.25)

5.2.4 Stress-Energy Tensor

Finally, the variation of the stress-energy tensor can be found by applying Equations 5.24

(variation in ∗M) and 5.23 (variation in l) to the expression for the stress-energy tensor

corresponding to the electromagnetic Lagrangian, given in Equation 3.33. The result is

as follows:

Tηρ = Fηχg
χσ

(
lxFρσ + ly

1

2
εαβρσr

2| sin θ|gαγgβδFγδ
)
− gηρl

+ ε

[
(Yηχg

χσ − FηχXχσ)
(
lxFρσ + lyεαβρσr

2| sin θ|gαγgβδFγδ
)

+ Fηχg
χσ

((
lxx

1

2
Fµνg

µλ(gνκYλκ −XνκFλκ)− lxy
1

48r2| sin θ|
εµνλκ

(
2FµνYλκ

+
1

2

(
e−ξXtt − eξXrr −

Xθθ

r2
− Xφφ

r2 sin2 θ

)
FµνFλκ

))
Fρσ + lxYρσ

+
1

2
εαβρσr

2| sin θ|gαγgβδFγδ
(
lyx

1

2
Fµνg

µλ(gνκY λκ−XνκFλκ)

− lyy
1

48r2| sin θ|
εµνλκ

(1

2

(
e−ξXtt − eξXrr −

Xθθ

r2
− Xφφ

r2 sin2 θ

)
FµνFλκ

+ 2FµνYλκ

))
+ ly

1

2
εαβρσr

2| sin θ|
(

+ 2XαγgβγFγδ + gαγgβδYγδ

+
1

2

(
e−ξXtt − eξXrr −

Xθθ

r2
− Xφφ

r2 sin2 θ

)
gαγgβδFγδ

))
+Xηρl

− gηρ
(
lx

1

2
Fµνg

µλ(gνκY λκ−XνκFλκ)− ly
1

48r2| sin θ|
εµνλκ

(
2FµνFλκ

+
1

2

(
e−ξXtt − eξXrr −

Xθθ

r2
− Xφφ

r2 sin2 θ

)
FµνFλκ

))]
(5.26)
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5.3 The Perturbed Einstein-Maxwell System

Combining the expressions for Rµν , gµν , R, Tµν , Fµν and Mµν derived in Section 5.2, one

can rewrite the Einstein-Maxwell system (Equations 3.34) for an infinitesimal deviation

from spherical symmetry. Knowing that the unperturbed quantities satisfy the Einstein-

Maxwell equations, this leads to a new set of equations for the tensors Xµν and Yµν .

The simplest example of this can be seen by inserting the perturbed Faraday tensor

into Equation 3.34b. The exterior derivative of the Faraday tensor F can be found using

Equation 2.24:

dF = d(Fµνdx
µ ∧ dxν) =

∂Fµν
∂xλ

dxλ ∧ dxµ ∧ dxν (5.27)

If F is a solution of the Einstein-Maxwell system (Equations 3.34), then this quantity is

equal to zero. When the perturbation is included, the equation becomes

d(F + εY ) = dF + εdY (5.28)

= 0 + εdY (5.29)

= ε
∂Yµν
∂xλ

dxλ ∧ dxµ ∧ dxν (5.30)

Hence, in order for the perturbed Faraday tensor to satisfy Equation 3.34b in the Einstein-

Maxwell system, we must have

∂Yµν
∂xλ

dxλ ∧ dxµ ∧ dxν = 0 (5.31)

Because of the skew-symmetric property of the wedge product, this is in fact equivalent

to saying that the tensor Yµν must satisfy

Y[µν,λ] = 0 (5.32)

This result is fairly trivial, given that Equation 3.34b is linear to begin with, but the

example above does at least serve to demonstrate the method needed to find the equations

for the perturbations X and Y .

Several checks were performed on the resulting equations to ensure that they made

sense, both mathematically and physically. This included confirming that the dimensions

of the Ricci tensor components and Ricci scalar were correct, and that the indices in

tensor equations matched up. When this was done, it was possible to move on to further

analysis.
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5.4 Analysis of the Resulting Equations

5.4.1 Lie Derivatives of g and F

The only physically meaningful solutions to the linearised Einstein-Maxwell system are

those defined modulo the Lie Derivatives of g and F .

If (g, F ) is a solution to the Einstein-Maxwell system then so is (h∗g, h∗F ) for any

diffeomorphism h(ε). But we know that if there is a family of solutions (g̃(ε), F̃ (ε)) such

that

(g̃|ε=0, F̃ |ε=0) = (g, F ) (5.33)

then

(X, Y ) = ((∂εg̃)|ε=0, (∂εF̃ )|ε=0) (5.34)

satisfies the linearised Einstein-Maxwell system. Thus by setting (g̃(ε), F̃ (ε)) = (h∗g, h∗F ),

and recalling the definition of the Lie derivative given in Section 2.2.4, it is clear that

(X, Y ) = ((∂ε(h∗g))|ε=0, (∂ε(h∗F ))|ε=0) = (LXg,LXF ) (5.35)

is a solution to the linearised Einstein-Maxwell system. It is therefore evident that the

only physically meaningful solutions to the system are those defined modulo these trivial

solutions.

The components of the Lie derivative of a tensor are given by Equation 2.20. Finding

the Lie derivatives of g and F in the direction of some arbitrary vector field Z gives

(LZg)µν = gµν,λZ
λ + gλνZ

λ
,µ + gµZ

λ
,ν (5.36)

and

(LZF )µν = Fµν,λZ
λ + FλνZ

λ
,µ + FµλZ

λ
,ν (5.37)

These two quantities together should satisfy the linearised Einstein-Maxwell system.

To confirm for example that LZF does in fact solve Equation 5.32, one can set

Yµν = (LZF )µν (5.38)

and take its derivative with respect to xρ:

Yµν,ρ = Fµν,λρZ
λ + Fµν,λZ

λ
,ρ + Fλν,ρZ

λ
,µ + FλνZ

λ
,µρ + Fµλ,ρZ

λ
,ν + FµλZ

λ
,νρ (5.39)

Inserting this into Equation 5.32, and using the facts that Fµν satisfies Equation 3.34b

and F [µν] = 0, it is possible to show that Yµν = (LZF )µν is a solution to 3.34b in the
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perturbed system:

Y[µν,ρ] = (Fµν,ρ + Fνρ,µ + Fρν,µ)λZ
λ + Fµν,λ + Fνλ,µ + Fλµ,ν)Z

λ
,ρ

+ (Fλν,ρ + Fνρ,λ + Fρλ,ν)Z
λ
,µ + (Fµλ,ρ + Fλρ,µ + Fρµ,λ)Z

λ
,ν

+ (Fλµ + Fµλ)Z,µρ + (Fµλ + Fλν)Z
λ
,νρ + (Fρλ + Fλρ)Z

λ
,µν

= 0 (5.40)

Similar calculations should indicate that the Lie derivatives of g and F also satisfy the

perturbed equations corresponding to Equations 3.34a and 3.34c of the Einstein-Maxwell

system, although the increased complexity of these equations in the absence of spherical

symmetry makes this a much more difficult task.

5.4.2 Spherically Symmetric Solutions

As mentioned in Section 4.3, given an aether law that fits certain conditions, the spheri-

cally symmetric solution to the Einstein-Maxwell system is unique. This means that any

spherically symmetric solutions to the linearised equations must be the trivial solution.

To check this, one can remove all derivatives with respect to the angular coordinates and

check that the only solutions to this simplified system are the trivial ones, i.e.

(X, Y ) = (LZg,LZF ) (5.41)

5.4.3 Difficulties with Analysis

Unfortunately, full analysis of the linearised equations was a near-impossible task. This

was mostly due to the lengthiness and complexity of the expressions for Rµν , R, Mµν and

Tµν when an infinitesimal perturbation had been added (see Equations 5.7- 5.17, 5.24 and

5.26), and meant that the linearisations of Equations 3.34a and 3.34c were so long that

it was impossible to obtain any meaningful information from them in the time allotted

for this project. Currently, alternative methods of linearisation are being considered, in

the hopes that the resulting equations will be easier to work with.
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5.5 An Alternative Method of Linearisation

One alternative method that could be used to linearise the Einstein-Maxwell system

would be to return to the Lagrangian for the system and use it to derive the equations

of motion for a one-parameter family of solutions. Then by varying the equations with

respect to this parameter one can find the linearised equations for the perturbed system.

To demonstrate this method, we will show how it works for the simpler case of the

“minimal surface problem”, i.e. that of finding a surface of minimal area with a given

boundary. Here we will consider the area as the Lagrangian of the problem, and denote

it by L, where

L = (1 + gαβu;αu;β)1/2 (5.42)

Then the problem amounts to finding a function u that minimises the integral

I =

∫
Ω

Lη =

∫
Ω

(1 + gαβu;αu;β)1/2 η (5.43)

where η is the volume form. First, to find the Euler-Lagrange equations, we vary I with

respect to a parameter s:
∂I

∂s
=

∫
Ω

∂L

∂s
η (5.44)

where
∂L

∂s
=

1

2
L−1

(
gαβ

∂u;α

∂s
u;β + gαβu;α

∂u;β

∂s

)
= L−1gαβu;α

∂u;β

∂s
(5.45)

I is stationary if and only if ∫
Ω

L−1gαβu;α
∂u;β

∂s
η = 0 (5.46)

for all u such that ∂u
∂s
|∂Ω = 0, or equivalently, that

(L−1gαβu;α);β = 0 (5.47)

pointwise (using integration by parts and neglecting boundary terms involving ∂u
∂s

). These

are the Euler-Lagrange equations for the system.

Now, we will assume that we have a solution ũ from the one-parameter family of solu-

tions7 and vary the system with respect to this second parameter, ε. We must therefore

calculate
∂2I

∂ε∂s
=

∫
Ω

∂2L

∂ε∂s
(5.48)

7Note that every equation satisfied by u is also satisfied by ũ.
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where

∂2L

∂ε∂s
= −L−2∂L

∂ε
gαβũ;α

∂ũ;b

∂s
+ L−1gαβ

∂ũ;α

∂ε

∂ũ;β

∂s
+ L−1gαβũ;α

∂2ũ;β

∂ε∂s

= −L3gγδũ;γ
∂ũ;δ

∂ε
gαβũ;α

∂ũ;β

∂s
+ L−3(1 + gγδũ;γũ;δ)g

αβ ∂ũ;α

∂ε

∂ũ;β

∂s
+ L−1gαβũ;α

∂2ũ;β

∂ε∂s

= L−3(gαβ + gαβgγδũ;γũ;δ − gαγgβδũ;γũ;δ)
∂ũ;α

∂ε

∂ũ;β

∂s
+ L−1gαβũ;α

∂2ũ;β

∂ε∂s

≡ L−3hαβ
∂ũ;α

∂ε

∂ũ;β

∂s
+ L−1gαβũ;α

∂2ũ;β

∂ε∂s
(5.49)

This time we want the integral in Equation 5.48 to be equal to 0 whenever ∂ũ
∂s

and ∂2ũ
∂ε∂s

vanish on the boundary. Therefore, using a similar integration by parts trick as before,

we have ∫
Ω

∂2L

∂ε∂s
η = −

∫
Ω

(
hαβ

∂ũ;α

∂ε ;β

∂ũ

∂s

)
η −

∫
Ω

(L−1gαβũ;α);β
∂2ũ

∂ε∂s
η (5.50)

The second term here is zero by the Euler-Lagrange equations (Equation 5.47), so we

merely require that ∫
Ω

(
hαβ

∂ũ;α

∂ε

)
;β

∂ũ

∂s
η = 0 (5.51)

for all ũ such that ∂ũ
∂s
|∂Ω = 0, or equivalently, that(

hαβ
∂ũ;α

∂ε

)
;β

= 0 (5.52)

pointwise.

The equations found using this method should be equivalent to those found using the

methods described in Sections 5.1, 5.2 and 5.3. To solve the minimal surface problem

using an infinitesimal perturbation, one would substitute u′ = u+ εv for u in the minimal

surface equation (Equation 5.47) and keep only terms that are linear in ε. This would

give an equation for v, which should be equivalent to that found for ∂ũ;α
∂ε

using the second

method (Equation 5.52).

The quantity v is equivalent to the quantities X and Y in the problem of linearising

the Einstein-Maxwell system. The main difference is that these equations are derived

using a completely general background solution, which can be substituted in at the end,

while the first method made use of the particular background value for g right from

the start. It is possible that by doing the calculation in this second way, the resulting

equations could be easier to work with than those found in Section 5.2 above.
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6 Conclusions and Further Study

In this project, an attempt was made to examine perturbations of the spherically sym-

metric solutions of the Einstein-Maxwell system of PDEs with a nonlinear aether law.

This was done by adding infinitesimally small perturbations εXµν and εYµν to the metric

gµν and Faraday tensor Fµν respectively, inserting them into the Einstein-Maxwell sys-

tem, and neglecting terms of order ε2. The result was a new set of equations for the

quantities Xµν and Yµν . As discussed in Section 5.4.3, the expressions obtained for Rµν ,

R, Mµν and Tµν were very lengthy and complicated (see Equations 5.7-5.17, 5.24 and

5.26). This meant that a full analysis of the resulting linearised system of equations was

near-impossible given the time allotted for this project. Currently, alternative methods

of linearising the Einstein-Maxwell system are being considered, such as that discussed

in Section 5.5. In this method, the known “background” solution is not substituted in

until the end, meaning that the form of the equations is more compact for the majority

of the calculation. It is hoped that final form of the equations will be simpler in this case

as well.

Future work will involve either trying to carry out the calculation using this (or an-

other) alternative method, or else attempting to further analyse the equations found using

the original method. The ultimate goal is to find the solutions for the next spherical har-

monic, and to investigate which of the three outcomes of the calculation mentioned in the

Introduction (i.e. that a solution exists (i) for each mass, charge and angular momentum,

(ii) only for some values of angular momentum or (iii) for no nonzero values of angular

momentum) is correct in the case of the Born-Infeld Lagrangian. The result will give some

insight into the suitability of nonlinear Maxwell theory with Born-Infeld Lagrangian as

a description of real-world charged particles such as the electron and proton.
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